Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence.
نویسندگان
چکیده
Diurnal variations in nitrate reductase (NR) activity and nitrogen metabolites were examined in wild-type Nicotiana plumbaginifolia and transformants with various degrees of NR deregulation. In the C1 line, NR was only deregulated at the transcriptional level by placing the NR gene under the control of the cauliflower mosaic virus 35S RNA promoter. In the Del8 and S521D lines, NR was additionally deregulated at the posttranslational level either by a deletion mutation in the N-terminal domain or by a mutation of the regulatory phosphorylation site (serine-521). Posttranslational regulation was essential for pronounced diurnal variations in NR activity. Low nitrate content was related to deregulation of NR, whereas the level of total free amino acids was much higher in plants with fully deregulated NR. Abolishing transcriptional and posttranslational regulation (S521D plants) resulted in an increase of glutamine and asparagine by a factor of 9 and 14, respectively, compared with wild type, whereas abolishing transcriptional regulation (C1 plants) only resulted in increases of glutamine and asparagine by factors <2. Among the minor amino acids, isoleucine and threonine, in particular, showed enhanced levels in S521D. Nitrate uptake rates were the same in S521D and wild type as determined with (15)N feeding. Deregulation of NR appears to set the level of certain amino acids, whereas diurnal variations were still determined by light/dark. Generally, deregulation of NR at the transcriptional level did not have much influence on metabolite levels, but additional deregulation at the posttranslational level resulted in profound changes of nitrogen metabolite levels.
منابع مشابه
Uptake and nitrate accumulation affected by partial replacement of nitrate-N with different source of amino acids in spinach and lettuce
As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Change in enzymes activities of N assimilation (NR, NiR and GS), residual nitrate (NO3-), soluble protein content, and yield of spinach and lettuce plants were investigated under replacing 20% nitrate-N in the nutrient solution by L-glycine and blood meal amino acids. Seeds of the mention...
متن کاملاثرات نیترات پتاسیم بر برخی خصوصیات بیوشیمیایی و فعالیت آنزیم نیترات ردوکتاز در دانهالهای پسته (Pistacia vera L.) تحت تنش کلرید سدیم
In the present study, response of Pistachio (Pistacia vera L.) on nitrate reductase activity, some biochemical characters and ions accumulation to salinity were evaluated. Salinity treatments (0, 75, 150 mM NaCl) and potassium nitrate (0, 10, 15 mM) were imposed and sampling were done 100 days after treatments. Results indicated that sodium chloride at 75 mM plus 10 mM potassium nitrate resulte...
متن کاملRegulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley.
To investigate the regulation of HvNRT2, genes that encode high-affinity NO(3)(-) transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO(3)(-) in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH(4)(+), and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity (13)NO(3)(-) influx and...
متن کاملNitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.
Nitrate has been shown to shunt the electron flow in Clostridium thermoaceticum from CO2 to nitrate, but it did not influence the levels of enzymes involved in the Wood-Ljungdahl pathway (J. M. Fröstl, C. Seifritz, and H. L. Drake, J. Bacteriol. 178:4597-4603, 1996). Here we show that under some growth conditions, nitrate does in fact repress proteins involved in the Wood-Ljungdahl pathway. The...
متن کاملAmino acids and nitrate as signals for the regulation of nitrogen acquisition.
The uptake of nitrogen (N) by roots is known to change with supply in a manner that suggests that the N status of plants is somehow sensed and can feedback to regulate this process. The most abundant source of N in soils for crops is nitrate. Uptake systems for nitrate, ammonium, and amino acids are present in the roots of most plants including crops. As nitrate is assimilated via conversion to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 140 3 شماره
صفحات -
تاریخ انتشار 2006